Nuprl Lemma : es-locl-antireflexive 11,40

the_es:event_system{i:l}, e:es-E(the_es). es-locl(the_esee
latex


Definitionsx(s), es-causl(esee'), P  Q, s = t, loc(e), es-locl(esee'), x:AB(x), es-E(es), P  Q, A, let x,y = A in B(x;y), t.1, x:AB(x), guard(T), wellfounded{i:l}(Ax,y.R(x;y)), x:A  B(x), event_system{i:l}, void, isect(Ax.B(x)), top, constant_function(fAB), band(pq), qpositive(r), bor(pq), q_le(rs), qadd_grp, grp_le(g), grp_leq(gab), qle(rs), tag(k), lnk(k), tl(l), if a<b then c else d, i <z j, i j, nth_tl(n;as), hd(l), l[i], rec-case(a) of [] => s | x::y => z.t(x;y;z), ||as||, (x  l), isrcv(k), -n, r * s, r - s, n + m, r + s, s+r, let x = a in b(x), when-after(e;info;pred?;init;Trans;val;time), state_when(e), outr(x), act(k), val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), Msg(M), type List, <ab>, inl x , rcv(l,tg), inr x , locl(a), kind(e), islocal(k), kindcase(ka.f(a); l,t.g(l;t)), Knd, n * m, isint(z;a;b), qeq(rs), nequal(Tab), int_nzero, b-union(AB), quotient(Ax,y.B(x;y)), rationals, EState(T), source(l), A  B, , SWellFounded(R(x;y)), link(e), EOrderAxioms(E;pred?;info), IdLnk, t  T, Unit, left + right, , EqDecider(T), es-pred?(es), axiom, , sender(e), rcv?(e), "$token", outl(x), pred(e), isl(x), b, first(e), pred!(e;e'), n - m, if a=b  then c  else d, (i = j), if b then t else f fi , Y, rel_exp(TRn), x f y, a < b, , {x:AB(x)} , , x.A(x), rel_plus(TR), e < e', es_info(es), t.2, destination(l), case b of inl(x) => s(x) | inr(y) => t(y), ecase1(e;info;i.f(i);l,e'.g(l;e')), loc(e), atom{$n:n}, Id, prop{i:l}, xt(x), False
Lemmasfalse wf, es-locl-wellfnd, es-E wf, not wf, es-locl wf, event system wf

origin